Germination of forage species in the presence of cadmium, copper and lead

Authors

  • Kathleen Steiner Rosniecek Universidade do Estado de Santa Catarina, Lages, SC, Brasil.
  • Mari Lucia Campos Universidade do Estado de Santa Catarina, Lages, SC, Brasil.
  • Cileide Maria Medeiros Coelho Universidade do Estado de Santa Catarina, Lages, SC, Brasil.
  • David José Miquelluti Universidade do Estado de Santa Catarina, Lages, SC, Brasil.
  • Emili Louise Diconcili Schutz Universidade do Estado de Santa Catarina, Lages, SC, Brasil.

DOI:

https://doi.org/10.5965/223811711932020270

Keywords:

trace elements, toxicity, Brachiaria, Panicum

Abstract

Soil contaminated with trace elements needs to introduce tolerant species and rapid growth. The objective of this study was to evaluate the germination of forage species Brachiaria humidicola cv. Tupi, Panicum maximum cultivars Aruana and Tanzania in the presence of trace elements cadmium (Cd), copper (Cu) and lead (Pb). The experiment was conducted in the Laboratory for Seed Analysis (CAV-UDESC), the tests were conducted in the absence of the elements (control - 0 mg L-1), and in the concentrations of 3, 180 and 200 mg L-1 for Cd, Pb and Cu respectively. Germination percentage (G), Germination Speed ​​Index (GSI), Vigor (V) and tolerance index for aerial parts (AP) and root (R) were calculated. The presence of Cu inhibited the germination, root emission and aerial part of the species P. maximum cv. Aruana, as for vigor index was affected by the presence of Cu for the species P. maximum cv. Tanzânia and B. humidicola cv. Tupi. The percentage of germination, germination speed index and shoot length of the three species studied were affected by the presence of Cd. The presence of Pb affected shoot length and root length, and vigor index for P. maximum cv. Aruana and P. maximum cv. Tanzânia. The decreasing order of species sensitivity in the presence of Cd and Pb was P. maximum cv. Aruana > P. maximum cv. Tanzânia > B. humidicola cv. Tupi.

Downloads

Download data is not yet available.

References

AKINCI IE & AKINCI S. 2010. Effect of chromium toxicity on germination and early seedling growth in melon (Cucumis melo L.). African Journal of Biotechnology 9: 4589-4594.

AHMAD I et al. 2012. Effect of cadmium on seed germination and seedling growth of four wheats (Triticum aestivum L.) cultivars. Pakistan Journal of Botany 44: 1569-1574.

ÁLVAREZ-MATEOS P et al. 2019. Phytoremediation of highly contaminated mining soils by Jatropha curcas L. and production of catalytic carbons from the generated biomass. Journal of Environmental Management 231: 886-895.

BORGES KSC et al. 2016. Germination and initial development of Brachiaria brizantha and Brachiaria decumbens on exposure to cadmium, lead and copper. Journal of Seed Sciences 38: 335-343.

BORGES KSC et al. 2019. Damage on the germination and development of radish seedlings and oat exposure to cadmium and lead. In: SEABRA G. (Ed). Conferência da Terra: Habitats urbanos e rurais. Ituiutaba: Barlavento. p.533-542.

BRASIL. 2009. Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Brasília: MAPA. 399p.

CHEN L et al. 2014. Interaction of hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biology and Biochemistry 68: 300-308.

CHUGH LK & SAWHNEY SK 1996. Effect of cadmium on germination, amylases and rate of respiration of germinating pea seeds. Environmental Pollution 92: 1-5.

CONAMA. 2009. Conselho Nacional do Meio Ambiente. RESOLUÇÃO No 420, de 28 de dezembro de 2009.

CORREA LA & SANTOS PM. 2003. Manejo e utilização de plantas forrageiras dos gêneros Panicum, Brachiaria e Cynodon. São Carlos: Embrapa Pecuária Sudeste. 36p.

CORREIA NM & PERUSSI FJ. 2015. Manejo de plantas adultas de Panicum maximum cv. Aruana. Revista Brasileira de Ciências Agrárias 10: 91-96.

DEZFULI PM et al. 2008. Influence of priming techniques on seed germination behavior of maize inbred lines (Zea mays L.) ARPN Journal of Agricultural and Biological Science. 3: 22-25.

DRAB M et al. 2011. Seed germination of selected plants under the influence of heavy metals. Civil and Environmental Engineering Reports 7: 47-57.

FENG R et al. 2016. Responses of root growth and antioxidative systems of paddy rice exposed to antimony and selenium. Envionmental and Experimental Botany 122: 29-38.

GIROTTO E et al. 2014. Copper availability assessment of Cu-contaminated vineyard soils using black oat cultivation and chemical extractants. Environmental Monitoring and Assessment 186: 9051-9063.

GONÇALVES LC & BORGES I. 2006. Tópicos de forragicultura tropical. Belo Horizonte: FEPMVZ. 117p.

GUTERRES J et al. 2019. Assessing germination characteristics of Australian native plant species in metal/metalloid solution. Journal of Hazardous Materials 364: 173-181.

KABATA-PENDIAS A. 2011. Trace elements in soils and plants. 4.ed. Boca Raton: CRC Press 520p.

KRANNER I & COLVILLE L. 2011. Metals and seeds: Biochemical and molecular implications and their significance for seed germination. Environmental and Experimental Botany 72: 93-105.

KO KS et al. 2012. Evaluation of the toxic effects of arsenite, chromate, cadmium, and copper using a battery of four bioassays. Applied Microbiology and Biotechnology 95: 1343-1350.

LAMBRECHTS T et al. 2014. Comparative analysis of Cd and Zn impacts on root distribution and morphology of Lolium perenne and Trifolium repens: implications for phytostabilization. Plant and Soil 376: 229-244.

MADEJÓN P et al. 2015. Effects of soil contamination by trace elements on white poplar progeny: seed germination and seedling vigour. Environmental Monitoring and Assessment 187: 663-674.

MAGUIRE JD. 1962. Speed of germination: aid in selection and evaluation for seedling emergence and vigor. Crop Science 2: 176-177.

MIDHAT L et al. 2019. Accumulation of heavy metals in metallophytes from three mining sites (Southern Centre Morocco) and evaluation of their phytoremediation potential. Ecotoxicology and Environmental Safety 169: 150-160.

MOOSAVI S et al. 2012. Effects of some heavy metals on seed germination characteristics of canola (Barassica napus), wheat (Triticum aestivum) and safflower (Carthamus tinctorious) to evaluate phytoremediation potential of these crops. Journal of Agricultural Science 4: 1-19.

MUNZUROGLU O & GECKIL H. 2002. Effects of element-trace on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Archives Environmental Contamination and Toxicology 43: 203-213.

MURPHY AS et al. 1999. Early copper- induced leakage of K+ from Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux. Plant Physiology 121: 1375-1382.

PEREIRA AR 2006. Como selecionar plantas para áreas degradadas e controle de erosão. Belo Horizonte: FAPI. 70p.

PEREIRA PM et. al. 2013. Fitotoxicidade do chumbo na germinação e crescimento inicial de alface em função da anatomia radicular e ciclo celular. Revista Agro@mbiente On-line 7: 36-43.

SANTOS FS et al. 2005. Fitorremeadição por Brachiaria humidicola de área de disposição de um resíduo perigoso. Floresta e Ambiente 12: 22-29.

SADERI SZ & ZARINKAMAR F. 2012. The effect of different Pb and Cd concentrations on seed germination and seedling growth of Matricaria chamomilla. Advances in Environmental Biology 6: 1940-1943.

SFAXI-BOUSBIH A et al. 2010. Cadmium impairs mineral and carbohydrate mobilization during the germination of bean seeds. Ecotoxicology and Environmental Safety 73: 1123-1129.

SHAH FUR et al. 2010. Heavy Metals Toxicity in Plants. In: ASHRAF M et al. (Ed.). Plant Adaptation and Phytoremediation. Nova York: Springer. p.71-97

SHAHID M et al. 2011. Lead-induced geno-toxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicology and Environmental Safety 74: 78-84.

SILVA PCC et al. 2013. Crescimento de plantas de girassol cultivadas em ambiente contaminado por chumbo. Bioscience Journal 29: 1576-1586.

SOUZA EL et al. 2018. Plantas forrageiras para pastos de alta produtividade. Nutritime 15: 8273-8284.

SOUZA LA et al. 2011. Tolerância e potencial fitorremediador de Stizolobium aterrimum associada ao fungo micorrízico arbuscular Glomus etunicatum em solo contaminado por chumbo. Revista Brasileira de Ciência Solo 35: 1441-1451.

STEFANELLO R et al. 2018. Tolerance of chia seeds to copper. Acta Biológica Catarinense 5: 42-49.

TEWARI RK et al. 2006. Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223: 1145-1153.

WILLIAMS ME. 2015. Plant Nutrition 3: Micronutrients and metals. The Plant Cell 27: 1-20.

YADA MM et al. 2015. Atributos Químicos e Bioquímicos em Solos Degradados por Mineração de Estanho e em Fase de Recuperação em Ecossistema Amazônico. Revista Brasileira de Ciência do Solo 39: 714-724.

ZUKOWSKA J & BIZIUK M. 2008. Methodological evaluation of method for dietary heavy metal intake. Journal of Food Science 73: 21-29.

Published

2020-09-30

How to Cite

ROSNIECEK, Kathleen Steiner; CAMPOS, Mari Lucia; COELHO, Cileide Maria Medeiros; MIQUELLUTI, David José; SCHUTZ, Emili Louise Diconcili. Germination of forage species in the presence of cadmium, copper and lead. Revista de Ciências Agroveterinárias, Lages, v. 19, n. 3, p. 270–277, 2020. DOI: 10.5965/223811711932020270. Disponível em: https://www.revistas.udesc.br/index.php/agroveterinaria/article/view/15719. Acesso em: 11 may. 2024.

Issue

Section

Research Article - Science of Plants and Derived Products

Most read articles by the same author(s)

<< < 1 2 3