Efeito da somatotropina bovina recombinante (rbST) e do propilenoglicol (PG) na quantidade e na qualidade dos embriões de vacas leiteiras da raça suíça castanha no início da lactação

Autores

DOI:

https://doi.org/10.5965/223811712412025076

Palavras-chave:

Desenvolvimento embrionário, Vacas, rbST, Fertilidade, Perú

Resumo

Este estudo teve como objetivo avaliar os efeitos da somatotropina bovina recombinante (rbST) e do propilenoglicol (PG) na produção de embriões em vacas leiteiras em lactação precoce. Trinta vacas da raça suíça parda foram distribuídas aleatoriamente por três grupos: controlo (n=10), PG (n=10) e rbST (n=10). Todos os animais foram submetidos a um protocolo de superovulação. No Dia 0, as vacas dos grupos PG e rbST receberam 200 ml de PG (RUMINIL®, Montana) e 500 mg de rbST (BOOSTIN-S®, Battilana), respetivamente. Além disso, no Dia 0, todas as vacas receberam um dispositivo intravaginal de libertação de progesterona (1200 mg DISPOCEL®, Von Franken), 1 mg de benzoato de estradiol e 40 mg de cloprostenol por via intramuscular. No dia 4, receberam 350 mg de FSH (Folltropin® - Vetoquinol). No 7º dia, foi retirado o dispositivo e administrado 40 mg de cloprostenol. No dia 9, foi efectuada a inseminação artificial. No 16º dia, os embriões foram recolhidos e avaliados. Os resultados da ANOVA indicaram que as vacas do grupo PG apresentaram um maior número de estruturas recuperadas, embriões recuperados e estruturas não fertilizadas em comparação com os grupos de controlo e rbST. O grupo rbST apresentou o maior número de embriões viáveis (qualidade 1 e 2). O grupo PG também apresentou o maior número de mórulas e blastocistos, enquanto o grupo rbST apresentou o maior número de blastocistos precoces. Além disso, a administração de rbST resultou num aumento de 19,3% e 18,3% das concentrações de glicose no soro (mg/dL) (p < 0,05) e da produção de leite (p < 0,05), respetivamente, em comparação com os grupos PG (16,7%, 12,5%) e de controlo (10,6%, 3,4%). A inclusão de PG no protocolo de superovulação aumentou o número de embriões, enquanto a rbST melhorou a qualidade e o estádio de desenvolvimento dos embriões.

Downloads

Não há dados estatísticos.

Referências

ACOSTA DAV et al. 2017. Effect of bovine somatotropin injection in late pregnant Holstein heifers on metabolic parameters and steroidogenic potential of the first postpartum dominant follicle. Theriogenology 104: 164–172.

AFRADIASBAGHARANI P et al. 2022. The insulin-like growth factor and its players: their functions, significance, and consequences in all aspects of ovarian physiology. Middle East Fertility Society Journal 27: 1–9.

ALBORNOZ L et al. 2015. Hipocalcemia Puerperal Bovina. Smvu 52: 28–38.

BELLO NM et al. 2012. Invited review: Milk production and reproductive performance: Modern interdisciplinary insights into an enduring axiom. Journal of Dairy Science 95: 5461–5475.

BJERRE-HARPØTH V et al. 2015. Effect of propylene glycol on adipose tissue mobilization in postpartum over-conditioned Holstein cows. Journal of Dairy Science 98: 8581–8596.

BÓ GA & MAPLETOFT RJ. 2013. Evaluation and classification of bovine embryos. Anim. Reprod. 10: 344–348.

BRITO LF et al. 2021. Review: Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal 15: 100292.

BUTLER WR & SMITH RD. 1989. Interrelationships Between Energy Balance and Postpartum Reproductive Function in Dairy Cattle. Journal of Dairy Science 72: 767–783

CHUNG YH et al. 2009. Effects of feeding dry propylene glycol to early postpartum Holstein dairy cows on production and blood parameters. Animal 3: 1368–1377.

CONSENTINI CEC et al. 2021. Factors That Optimize Reproductive Efficiency in Dairy Herds with an Emphasis on Timed Artificial Insemination Programs. Animals 11: 301.

COSTA NP et al. 2020. Effects of recombinant bovine somatotropin on pregnancy per artificial insemination, corpus luteum cellular composition and endometrial gland morphometry in beef cattle. Theriogenology 141: 180–185.

COSTA SL et al. 2014. Influence of Insulin-like Growth Factor I (IGF-I) on the survival and the in vitro development of caprine preantral follicles. Pesquisa Veterinária Brasileira 34: 1037–1044.

CROWE MA et al. 2018. Reproductive management in dairy cows - the future. Irish Veterinary Journal 71: 1.

DEKA RP et al. 2021. Estimates of the Economic Cost Caused by Five Major Reproductive Problems in Dairy Animals in Assam and Bihar, India. Animals 11: 1–20.

DEMETRIO DGB et al. 2020. How can we improve embryo production and pregnancy outcomes of Holstein embryos produced in vitro? (12 years of practical results at a California dairy farm). Animal Reproduction 17: 1–13.

DURAND MGP et al. 2022. Factores que afectan la tasa de preñez en receptoras de embriones producidos in vitro bajo condiciones de altura. Revista de Investigaciones Veterinarias Del Perú 33: e22897.

FEIJÓ JO et al. 2015. Prepartum administration of recombinant bovine somatotropin (rBST) on adaptation to subclinical ketosis of the ewes and performance of the lambs. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia 67: 103–108.

FERNÁNDEZ A et al. 2020. Expression of the Insulin-Like Growth Factor-1 and its Relationship with the In Vitro Bovine Embryo Production. Revista Facultad de Ciencias Veterinarias 61: 3–11.

GAMARRA G et al. 2015. Dietary propylene glycol and in vitro embryo production after ovum pick-up in heifers with different anti-Müllerian hormone profiles. Reproduction, Fertility and Development 27: 1249.

GAMARRA G et al. 2018. Oral propylene glycol modifies follicular fluid and gene expression profiles in cumulus–oocyte complexes and embryos in feed-restricted heifers. Reproduction, Fertility and Development 30: 417.

GARCÍA AMB et al. 2011. Metabolic evaluation of dairy cows submitted to three different strategies to decrease the effects of negative energy balance in early postpartum. Pesquisa Veterinária Brasileira 31: 11–17.

GINTHER O et al. 2001. Effect of LH on circulating oestradiol and follicular fluid factor concentrations during follicle deviation in cattle. Reproduction 122: 103–110.

HAN Y et al. 2019. IGF-1 Inhibits Apoptosis of Porcine Primary Granulosa Cell by Targeting Degradation of BimEL. International Journal of Molecular Sciences 20: 5356.

HANSEN PJ et al. 2023. Review: Some challenges and unrealized opportunities toward widespread use of the in vitro-produced embryo in cattle production. Animal 17: 100745.

IETS. 2011. International Embryo Transfer Society. Manual of the International Embryo Transfer Society.

JOUSAN FD & HANSEN PJ. 2007. Insulin-like growth factor-I promotes resistance of bovine preimplantation embryos to heat shock through actions independent of its anti-apoptotic actions requiring PI3K signaling. Molecular Reproduction and Development 74: 189–196.

KAEWLAMUN W et al. 2020. Kick-starting ovarian cyclicity by using dietary glucogenic precursors in post-partum dairy cows: a review. International Journal of Veterinary Science and Medicine 8: 39–48.

KAMINSKI AP et al. 2019. Impact of recombinant bovine somatotropin, progesterone, and estradiol benzoate on ovarian follicular dynamics in Bos taurus taurus cows using a protocol for estrus and ovulation synchronization. Theriogenology 125: 331–334.

LIMA FS de. 2020. Recent advances and future directions for uterine diseases diagnosis, pathogenesis, and management in dairy cows. Animal Reproduction 17: 1–20.

LIU Q et al. 2009. Effects of feeding propylene glycol on dry matter intake, lactation performance, energy balance and blood metabolites in early lactation dairy cows. Animal 3: 1420–1427.

LOPES RB et al. 2019. Technical note: Glucose concentration in dairy cows measured using 6 handheld meters designed for human use. Journal of Dairy Science 102: 9401–9408.

LUCY MC. 2019a. Stress, strain, and pregnancy outcome in postpartum cows. Animal Reproduction 16: 455–464.

LUCY MC. 2019b. Symposium review: Selection for fertility in the modern dairy cow—Current status and future direction for genetic selection. Journal of Dairy Science 102: 3706–3721.

MACMILLAN K et al. 2018. Update on Multiple Ovulations in Dairy Cattle. Animals 8: 62.

MIKUŁA R et al. 2018. Effect of different pre-calving feeding strategies on the metabolic status and lactation performance of dairy cows. Journal of Animal and Feed Sciences 27: 292–300.

NIELSEN NI & INGVARTSEN KL. 2004. Propylene glycol for dairy cows A review of the metabolism of propylene glycol and its effects on physiological parameters, feed intake, milk production and risk of ketosis. Animal Feed Science and Technology 115: 191–213.

QUISPE CE et al. 2018. Embryo development capacity of bovine oocytes recovered via ultrasonography and slaughterhouse ovaries. Veterinary Research Journal Of Peru 29: 1114–1121.

R TEAM CORE. 2019. A language and Environment for Statistical Computing. R Foundation for Statistical Computing (4.0.0). R Foundation for Statistical Computing.

RAUX A et al. 2022. The Promise and Challenges of Determining Recombinant Bovine Growth Hormone in Milk. Foods 11: 274.

RHOADS ML et al. 2008. Growth hormone receptor, insulin-like growth factor (IGF)-1, and IGF-binding protein-2 expression in the reproductive tissues of early post part urn dairy cows. Journal of Dairy Science 91: 1802–1813.

RHOADS RP et al. 2004. Insulin Increases the Abundance of the Growth Hormone Receptor in Liver and Adipose Tissue of Periparturient Dairy Cows. Journal of Nutrition 134: 1020–1027.

RHOADS RP et al. 2007. Effect of nutrition on the GH responsiveness of liver and adipose tissue in dairy cows. Journal of Endocrinology 195: 49–58.

RINCÓN JAA et al. 2019. Effect of recombinant bovine somatotropin (rbST) treatment on follicular population and development in non-lactating dairy cows. Animal Reproduction 16: 914–922.

ROELOFS J. 2023. Un ojo con las vacas fértiles. Better Cows Better Life. https://crv4all.com/es/news/un-ojo-con-las-vacas-fértiles

SALES JNS et al. 2019. Pre-TAI protocol strategies to increase reproductive efficiency in beef and dairy cows. Animal Reproduction 16: 402–410.

SILVA WC et al. 2023. Animal welfare and effects of per-female stress on male and cattle reproduction—A review. Frontiers in Veterinary Science 10: 1–18.

SOTY M et al. 2017. Gut-Brain Glucose Signaling in Energy Homeostasis. Cell Metabolism 25: 1231–1242.

SOUZA A et al. 2008. Embryo Production in Superovulated Goats Treated with Insulin Before or After Mating or By Continuous Propylene Glycol Supplementation. Reproduction in Domestic Animals 43: 218–221.

SPICER LJ & AAD PY. 2007. Insulin-Like Growth Factor (IGF) 2 Stimulates Steroidogenesis and Mitosis of Bovine Granulosa Cells Through the IGF1 Receptor: Role of Follicle-Stimulating Hormone and IGF2 Receptor1. Biology of Reproduction 77: 18–27.

SUNDRUM A. 2015. Metabolic Disorders in the Transition Period Indicate that the Dairy Cows’ Ability to Adapt is Overstressed. Animals 5: 978–1020.

TARAZÓN-HERRERA MA et al. 2009. Effects of bovine Somatotropin injection on milk production and milk composition of Holstein cows in very late lacturation. BIOtecnia 11: 34.

YAKAR S et al. 2018. 40 YEARS OF IGF1: Insulin-like growth factors: actions on the skeleton. Journal of Molecular Endocrinology 61: T115–T137.

ZHANG F et al. 2020. Effects of propylene glycol on negative energy balance of postpartum dairy cows. Animals 10: 1–15.

Downloads

Publicado

2025-08-12

Como Citar

PAYANO, Ide Unchupaico; EULOGIO, Carlos Quispe; GOMEZ, Edith Ancco; VILLAR, Fernando Arauco; CRUZ, Alex Huamán de la. Efeito da somatotropina bovina recombinante (rbST) e do propilenoglicol (PG) na quantidade e na qualidade dos embriões de vacas leiteiras da raça suíça castanha no início da lactação . Revista de Ciências Agroveterinárias, Lages, v. 24, n. 1, p. 76–90, 2025. DOI: 10.5965/223811712412025076. Disponível em: https://www.revistas.udesc.br/index.php/agroveterinaria/article/view/26055. Acesso em: 4 set. 2025.

Edição

Seção

Artigo de Pesquisa - Ciência de Animais e Produtos Derivados