Um bioproduto à base de Solieria chordalis aumenta a tolerância ao calor, os pigmentos fotossintéticos e a produtividade do milho

Autores

DOI:

https://doi.org/10.5965/223811712422025263

Palavras-chave:

carotenóides, metabolismo primário, Clorofila a. Clorofila b, extrato de algas marinhas vermelha, rhodophyta

Resumo

A utilização de bioprodutos derivados de algas marinhas vem ganhando destaque nos sistemas de produção agrícola devido às suas propriedades e efeitos bioativos. Esses produtos apresentam características fitoestimulantes que melhoram o crescimento das plantas e melhoram os parâmetros de rendimento em diversas culturas de interesse agronômico. O milho, uma das culturas mais cultivadas no mundo, é significativamente beneficiado pela aplicação de bioprodutos derivados de algas marinhas devido à sua susceptibilidade a vários estresses ambientais. O objetivo deste estudo foi avaliar a aplicação foliar de um bioproduto produzido a partir da macroalga vermelha Solieria cordalis (Rhodophyta) na biossíntese de pigmentos fotossintéticos e na produtividade de 27 híbridos de milho na região do Cerrado brasileiro, a qual sofre diversos tipos de estresses abióticos, como verânicos e altas temperaturas. O experimento foi conduzido em uma estação experimental localizada na cidade de Sidrolândia, Mato Grosso do Sul, Brasil, durante a segunda safra de milho de 2023. Os resultados mostraram que uma única aplicação foliar de um produto à base de algas vermelhas (1,0 L ha-1) no estádio fenológico V6 aumentou os pigmentos fotossintéticos e o rendimento da maioria dos híbridos de milho. A aplicação foliar do produto à base de algas vermelhas elevou o metabolismo primário das plantas culminando em um maior rendimento em condições de campo.

Downloads

Não há dados estatísticos.

Referências

ADEM M et al. 2023. Impact of integrated soil fertility management practices on maize yield in Ethiopia. Soil and Tillage Research 227: 105595. DOI: https://doi.org/10.1016/j.still.2022.105595

AHMAD A et al. 2022. Combating salinity through natural plant extracts based biostimulants: A review. Frontiers in Plant Science 13: 862034. DOI: https://doi.org/10.3389/fpls.2022.862034

AHMAD I et al. 2020. Adaptation strategies for maize production under climate change for semi-arid environments. European Journal of Agronomy 115: 126040. DOI: https://doi.org/10.1016/j.eja.2020.126040

ALI O et al. 2021. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 10: 531. DOI: https://doi.org/10.3390/plants10030531

BARBOSA JC & MALDONADO Jr. W. 2015. Experimentação agronômica & AgroEstat – Sistema para analyses estatísticas de ensaios agronômicos. Jaboticabal: Multipress. 396p.

CARRASCO-GIL S et al. 2021. Application of Seaweed Organic Components Increases Tolerance to Fe Deficiency in Tomato Plants. Agronomy 11: 507. DOI: https://doi.org/10.3390/agronomy11030507

COSTA FHR et al. 2021a. Maize crop yield in function of salinity and mulch. Brazilian Journal of Agricultural and Environmental Engineering 25: 840-846. DOI: https://doi.org/10.1590/1807-1929/agriambi.v25n12p840-846

COSTA MR et al. 2021b. Water footprint of soybean, cotton, and corn crops in the western region of Bahia Sate. Engenharia Sanitária e Ambiental 26: 971-978. DOI: https://doi.org/10.1590/s1413-41522020041

DUCATTI RDB et al. 2021a. Uso de carragena para a redução de desoxinivalenol em grãos de trigo e cevada. Journal of Biotechnology and Biodiversity 9: 40–47. DOI: https://doi.org/10.51189/rema/2013

DUCATTI RDB et al. 2021b. An algal sulphated polysaccharide capable of reducing mycotoxin biosynthesis by Fusarium. Communication in Plant Science 11: 57-59. DOI: https://doi.org/10.26814/cps2021007

DUCATTI RDB et al. 2023. Wheat elicitation performed in open field with the use of different elicitors. Contribuciones a las Ciencias Sociales 16: 6165-6185. DOI: https://doi.org/10.55905/revconv.16n.7-057

DUCATTI RDB et al. 2024. Photosynthesis, Salicylic Acid Content and Enzyme Activity of Triticum aestivum L. Influenced by the Use of a Seaweed Biostimulant Based on Solieria chordalis. Journal of Plant Growth Regulation 43: 3295–3302. DOI: https://doi.org/10.1007/s00344-023-11214-6

DUCATTI RDB. 2023. Plant Elicitation: The Generation of Misleading and Biased Information. Journal of Plant Growth Regulation 42: 3785–3788. DOI: https://doi.org/10.1007/s00344-022-10838-4

EMBRAPA. 2006. Empresa Brasileira de Pesquisa Agropecuária. Viabilidade e Manejo da Irrigação da Cultura do Milho. Minas Gerais: EMBRAPA. 12p. Circular Técnica 85. Available at: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPMS/ 19629/1/Circ_85.pdf. Accessed in: October 2024.

ERENSTEIN O et al. 2022. Global maize production, consumption and trade: trends and R&D implications. Food security 14: 1295-1319. DOI: https://doi.org/10.1007/s12571-022-01288-7

FAO. 2024. Food and Agriculture Organization on the United Nations. FAOSTATS. Available at: https://www.fao.org/faostat/en/#data/QCL. Accessed in: February 2024.

FAS:USDA. 2024. Foreign Agricultural Service. United States Department of Agriculture World Agricultural Production. Available at: https://apps.fas. usda.gov/psdonline/circulars/production.pdf. Accessed in: February 2024.

GOLUBKINA N et al. 2018. Yield, quality and antioxidant properties of indian mustard (Brassica juncea L.) in response to foliar biofortification with selenium and iodine. Plants 7: 80. DOI: https://doi.org/10.3390/plants7040080

HEBER U et al. 2006. Conservation and dissipation of light energy as complementary processes: homoiohydric and poikilohydric autotrophs. Journal of Experimental Botany 57: 1211-1223. DOI: https://doi.org/10.1093/jxb/erj104

HOU P et al. 2021. Quantifying maize grain yield losses caused by climate change based on extensive field data across China. Resources, Conservation and Recycling, 174: 105811. DOI: https://doi.org/10.1016/j.resconrec.2021.105811

JACOMASSI LM et al. 2022. A Seaweed Extract-Based Biostimulant Mitigates Drought Stress in Sugarcane. Frontiers in Plant Science 13: 865291. DOI: https://doi.org/10.3389/fpls.2022.865291

JANNIN L et al. 2013. Brassica napus growth is promoted by Ascophyllum nodosum (L). Le Jol. seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. Journal of Plant Growth Regulation 32: 31-52. DOI: https://doi.org/10.1007/s00344-012-9273-9

KIM K-H & LEE B-M. 2023. Effects of climate change and drought tolerance on maize growth. Plants 12: 3548. DOI: https://doi.org/10.3390/plants12203548

LANZA MGDB & REIS AR. 2021. Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiology and Biochemistry 164: 27-43. DOI: https://doi.org/10.1016/j.plaphy.2021.04.026

LATIQUE S et al. 2013. Seaweed liquid fertilizer effect on physiological and biochemical parameters of bean plant (Phaseolus vulgaris var Paulista) under hydroponic system. European Scientific Journal 9: 174-191.

LI Y et al. 2018. Factors Influencing Leaf Chlorophyll Content in Natural Forests at the Biome Scale. Frontiers in Ecology and Evolution 6: 00064. DOI: https://doi.org/10.3389/fevo.2018.00064

LICHTENTHALER HK. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350-382. DOI: https://doi.org/10.1016/0076-6879(87)48036-1

MAINTRA S & SINGH V. 2021. Invited review on ‘maize in the 21st century’ Emerging trends of maize biorefineries in the 21st century: scientific and technological advancements in biofuel and bio-sustainable market. Journal of Cereal Science 101: 103272. DOI: https://doi.org/10.1016/j.jcs.2021.103272

MARTINS T et al. 2023. Enhancing Health Benefits through Chlorophylls and Chlorophyll-Rich Agro-Food: A Comprehensive Review. Molecules 28: 5344. DOI: https://doi.org/10.3390/molecules28145344

MELO ER et al. 2023. In vivo elicitation is efficient in increasing essential oil yield with high anti-inflammatory sesquiterpene content in Varronia curassavica Jacq. Chilean journal of agricultural research 83: 369-379. DOI: https://doi.org/10.4067/S0718-58392023000300369

NLEYA T et al. 2016. Corn growth and development. In: CLAY DE et al. (Eds.) iGrow Corn: Best Management Practices. Brookings: South Dakota State University. (Chapter 5).

PICHERSKY E & RAGUSO RA. 2016. Why do plants produce so many terpenoid compounds? New phycologist 220: 655-658. DOI: https://doi.org/10.1111/nph.14178

REPKE RA et al. 2022. Increased soybean tolerance to high-temperature through biostimulant based on Ascophyllum nodosum (L.) seaweed extract. Journal of Applied Phycology 34: 3205-3218. DOI: https://doi.org/10.1007/s10811-022-02821-z

REZAEI EE et al. 2023. Climate change impacts on crop yield. Nature Reviews Earth & Environment 4: 831-846. DOI: https://doi.org/10.1038/s43017-023-00491-0

SADDIQUE Q et al. 2020. Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China. Mitigation and Adaptation Strategies for Global Change 25: 1523-1543. DOI: https://doi.org/10.1007/s11027-020-09935-0

SHUKLA PS et al. 2018. Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. AoB Plants 10: plx051. DOI: https://doi.org/10.1093/aobpla/plx051

SHUKLA PS et al. 2021. Seaweed-Based Compounds and Products for Sustainable Protection against Plant Pathogens. Marine Drugs 19: 59. DOI: https://doi.org/10.3390/md19020059

SUNOJ VSJ et al. 2016. Diurnal temperature amplitude alters physiological and growth response of maize (Zea mays L.) during vegetative stage. Environmental and Experimental Botany 130: 113-121. DOI: https://doi.org/10.1016/j.envexpbot.2016.04.007

SWAPNIL P et al. 2021. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Current Plant Biology 26: 100203. DOI: https://doi.org/10.1016/j.cpb.2021.100203

Downloads

Publicado

2025-09-16

Como Citar

CAMPAGNARO, Vinicius Salvati; SPERA, Kamille Daleck; GORNI, Pedro Henrique; DUCATTI, Rafael Dal Bosco; REIS, André Rodrigues dos. Um bioproduto à base de Solieria chordalis aumenta a tolerância ao calor, os pigmentos fotossintéticos e a produtividade do milho. Revista de Ciências Agroveterinárias, Lages, v. 24, n. 2, p. 263–275, 2025. DOI: 10.5965/223811712422025263. Disponível em: https://www.revistas.udesc.br/index.php/agroveterinaria/article/view/25870. Acesso em: 21 nov. 2025.

Edição

Seção

Artigo de Pesquisa - Ciência de Plantas e Produtos Derivados

Artigos mais lidos pelo mesmo(s) autor(es)