Physicochemical analysis of floral honeys produced by Apis mellifera L. between 2018 and 2020 in the State of Santa Catarina, southern Brazil

Authors

DOI:

https://doi.org/10.5965/223811712312024106

Keywords:

Beekeeping, PCA, Food safety

Abstract

Brazil is a major producer of honey and is internationally recognized for the quality of this product. To assess the quality of the product, physicochemical analyses were carried out. In this sense, samples of honey from the eleven agroecological zones of Santa Catarina, southern Brazil, were analyzed for moisture content, pH, reducing sugars, apparent sucrose, water activity, diastase enzyme, color, and Lund reaction. Sixty-five samples of honey collected in the 2018-2019 harvest and 50 in the 2019-2020 harvest were analyzed. The data were analyzed using analysis of variance and the Scott & Knott test (p<0.05) with the aid of scripts written in the R language. Principal component analysis (PCA) was also applied to the physicochemical dataset to verify possible sample groupings between the agroecological zones of the State and interactions between the variables. Moisture and apparent sucrose contents of the honey showed the greatest discrepancies in their values regarding what is permitted by the Brazilian legislation. Three agroecological zones were correlated in terms of the data found. PCA showed that moisture, pH, and water activity were relevant physicochemical parameters for grouping and discriminating samples. From the results herein shown, it is perceived the need for continuous monitoring of honey produced in Santa Catarina State, as well as the qualification of beekeepers for harvesting, processing, and storage.

Downloads

Download data is not yet available.

Author Biographies

Aline Nunes, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil.

.

Giovanna Balen de Azambuja, Universidade do Estado de Santa Catarina, Chapecó, Santa Catarina, Brasil

.

Guilherme Luiz Deolindo, Universidade do Estado de Santa Catarina, Chapecó, SC, Brasil.

.

Cleiciane Rita, Universidade do Estado de Santa Catarina, Chapecó, SC, Brasil.

.

Gadiel Zilto Azevedo, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil.

.

Beatriz Rocha dos Santos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil.

.

Denise Nunes Araújo, Universidade do Estado de Santa Catarina, Chapecó, SC, Brasil.

.

Sidnei Moura, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brasil.

.

Marcelo Maraschin, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil.

.

References

AHMAD NN & KHAIRATUN SN. 2021. Exploring fraudulent honey cases from readily available food fraud databases. GATR Global Journal of Business Social Sciences Review 9: 99-113.

ARAÚJO DR et al. 2006. Avaliação da qualidade físico-química do mel comercializado na cidade de Crato, CE. Revista de Biologia e Ciência da Terra 6: 51-55.

AZEREDO MAA et al. 1999. Características físico-químicas dos méis do município de São Fidélis-RJ. Ciência e Tecnologia de Alimentos 19: 3-7.

BAGLIO E. 2018. Overheating indexes and honey quality. In: Springer Briefs in Molecular Science. Cham: Springer International Publishing.

BELL LN. 2020. Moisture effects on food’s chemical stability. In: Water Activity in Foods. Wiley.

BRASIL. 2000. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa 11, de 20 de outubro de 2000. Regulamento Técnico de identidade e qualidade do mel. Brasília.

CARDOSO JT. 2016. A Mata Atlântica e sua conservação. Revista Encontros Teológicos 31: 441-458.

CHATAWAY HD. 1935. Honey tables, showing the relationship between various hydrometer scales and refractive index to moisture content and weight per gallon of honey. Canadian Bee Journal 43: 215-220.

DIAS JS. et al. 2009. Caracterização físico-química de amostras de mel. UNOPAR Científica Ciências Exatas e Tecnológicas 8: 19-22.

DRIVELOS SA. et al. 2021. Geographical origin and botanical type honey authentication through elemental metabolomics via chemometrics. Food Chemistry 338: 1-8.

EL SOHAIMY SA et al. 2015. Physicochemical characteristics of honey from different origins. Annals of Agricultural Science 60: 279-287.

EMBRAPA. 2023. Empresa Brasileira de Pesquisa Agropecuária. Sistema de Produção de Mel. Disponível em: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1156063/sistema-de-producao-de-mel. Acesso em: 06 nov. 2023.

EPAGRI. 2021. Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina. Abelhas africanizadas. Apis On-line. Disponível em: https://ciram.epagri.sc.gov.br/apicultura/abelhas-apis.html. Acesso em: 05 jan. 2022.

ESCUREDO O & SEIJO MC. 2019. Honey: Chemical composition, stability and authenticity. Foods 8: 1-3.

FAO. 2021. The Food and Agriculture Organization. Faostat. Disponível em: http://www.fao.org/faostat/. Acesso em: 05 out. 2021.

FERNANDES RT et al. 2020. Características de qualidade do mel de abelha sem ferrão (Melipona fasciculata) produzidos na baixada maranhense. Brazilian Journal of Development 6: 41268-41275.

GARCÍA NL. 2018. The current situation on the international honey market. Bee World 95: 89-94.

GOMES VV. et al. 2017. Evaluation of the quality of honey commercialized in western Pará, Brazil. Revista Virtual de Química 9: 815-826.

HAIDAMUS SL. et al. 2019. Floral diversity in different types of honey. Brazilian Archives of Biology and Technology 62: 1-12.

IBGE. 2020. Instituto Brasileiro de Geografia e Estatística. SIDRA – Banco de Tabelas Estatísticas. Brasília. Disponível em: https://sidra.ibge.gov.br/home/ipca/brasil. Acesso em: 06 out. 2021.

INSTITUTO ADOLFO LUTZ. 2008. Métodos físico-químicos para análise de alimentos. São Paulo: Instituto Adolfo Lutz.

KANAAN MHG & TAREK AM. 2020. Clostridium botulinum, A Foodborne pathogen and its impact on public health. Annals of Tropical Medicine and Public Health 23: 49-62.

KÜÇÜK M et al. 2007. Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chemistry 100: 526-534.

MARSARO JÚNIOR AL. et al. 2022. Caracterização físico-química e palinológica de mel de Apis mellifera, obtido a partir de florada de canola, de municípios do Rio Grande do Sul, Brasil. Revista Científica Intelletto 7: 108-126.

MEDVEĎOVÁ A. et al. 2019. Staphylococcus aureus 2064 growth as affected by temperature and reduced water activity. Italian Journal of Food Safety 8: 188-193.

MORDOR INTELLIGENCE. 2020. Apiculture Market – Growth, Trends, and Forecasts. Mordor.

PASCUAL-MATÉ A. et al. 2018. Methods of analysis of honey. Journal of Apicultural Research 57: 38-74.

RATIU IA et al. 2019. Correlation study of honey regarding their physicochemical properties and sugars and cyclitols content. Molecules 25: 1-15.

RIBEIRO RJ et al. 2022. Physicochemical characterization, bioactive compounds and antioxidant activity of Apis mellifera honey from western Paraná State, Brazil. Acta Brasiliensis 6: 95-100.

ROLIM MBQ. et al. 2018. Generalidades sobre o mel e parâmetros de qualidade no Brasil: revisão. Medicina Veterinária 12: 73-81.

ROPCIUC S et al. 2017. Impact of adulteration with glucose, fructose and hydrolysed inulin syrup on honey physicochemical properties. Food and Environment Safety 16: 54-60.

SCOTT AAJ & KNOTT M. 1974. A Cluster Analysis method for grouping means in the analysis of variance. International Biometric 30: 507-512.

SILVA CL et al. 2004. Caracterização físico-química de méis produzidos no Estado do Piauí para diferentes floradas. Revista Brasileira de Engenharia Agricola e Ambiental 8: 260-265.

SILVA PM. et al. 2020. Stability of Brazilian Apis mellifera L. honey during prolonged storage: Physicochemical parameters and bioactive compounds. Food Science and Technology 129: 1-10.

SINGH I & SINGH S. 2018. Honey moisture reduction and its quality. Journal of Food Science and Technology 55: 3861-3871.

SOUZA RR et al. 2019. Melissopalynology in Brazil: a map of pollen types and published productions between 2005 and 2017. Palynology 43: 690-700.

SYAMALADEVI RM. et al. 2016. Influence of water activity on thermal resistance of microorganisms in low-moisture foods: A review. Comprehensive Reviews in Food Science and Food Safety 15: 353-370.

TERRA NN et al. 2007. Atividade de água, pH, umidade e desenvolvimento de Staphylococcus xylosus durante o processamento e armazenamento da paleta suína curada, maturada e fermentada. Food Science and Technology 27: 756-760.

THRASYVOULOU A. et al. 2018. Legislation of honey criteria and standards. Journal of Apicultural Research 57: 88-96.

VIDAL R & FREGOSI EV. 1984. Mel: características, análises físico-químicas, adulterações e transformações. Barretos: Instituto Tecnológico Científico Roberto Rios.

ZAREI M et al. 2019. Effect of thermal treatment on physicochemical and antioxidant properties of honey. Heliyon 5: 1-6.

ZHANG G-Z. et al. 2021. Investigation of the maturity evaluation indicator of honey in natural ripening process: the case of rape honey. Foods 10: 1-16.

Downloads

Published

2024-04-01

How to Cite

NUNES, Aline; AZAMBUJA, Giovanna Balen de; DEOLINDO, Guilherme Luiz; RITA, Cleiciane; AZEVEDO, Gadiel Zilto; SANTOS, Beatriz Rocha dos; ARAÚJO, Denise Nunes; MOURA, Sidnei; MARASCHIN, Marcelo. Physicochemical analysis of floral honeys produced by Apis mellifera L. between 2018 and 2020 in the State of Santa Catarina, southern Brazil. Revista de Ciências Agroveterinárias, Lages, v. 23, n. 1, p. 106–116, 2024. DOI: 10.5965/223811712312024106. Disponível em: https://www.revistas.udesc.br/index.php/agroveterinaria/article/view/24528. Acesso em: 17 jun. 2024.

Issue

Section

Research Article - Science of Animals and Derived Products