Early diagnosis of mamarian diseases using thermal imaging and machine learning
DOI:
https://doi.org/10.5965/2316419001012012055Keywords:
thermography, breast cancer, computed aided diagnosisAbstract
Cancer is a class of diseases characterized by out-of-control cell growth, they have lost their function in tissue and do not die. This reproduction increases the local temperature because new blood vessels, neo-angiogenesis, are promoted by cancer cells. The medical thermography is a way to acquire the skin temperature and analyze these patterns. The human body is almost symmetric considering the sagittalplane that is the plane that divides the body in right and left parts, when there are great changes in the temperature pattern between right and left breast possible pathology must be investigated. This work aims to explore the possibilities of pattern recognition techniques on the classification of the images from the ProENG project as from healthy orpathological mamma. Threedifferent groups of feature are extracted from the thermal images of this project: statistic features, fractal geometry based features and geo-statistic features. Three classifiers have been tested: SVM, KNN and Naïve Bayes. Additionally two feature reduction techniques have been used: PCA and Information Gain Ratio. The results are promising: 90% of accuracy and 0.9 for the area under ROC.
Downloads
References
ACHARYA, U.R.; NG, E. Y. K.; TAN, J. H. e SREE, S. V. Thermography based breast cancer detection using texture features and support vector machine. Journal of Medical Systems, pp. 01-08, 2010.
ARABI, P. M.; MUTTAN, S. e SUJI, R. J. Image enhancement for detection of early breast carcinoma by external irradiation. International Conference on Computing Communication and Networking Technologies (ICCCNT), pp. 01-09, 2010.
ARORA, N., MARTINS, D., RUGGERIO, D., TOUSIMIS, E., SWISTEL, A., OSBORNE, M. P. Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer.The Amerian Journal of Surgery Vol. 196, pp. 523-526, 2008.
BEZERRA, L. Uso de imagens termográficas em tumores mamários para validação de simulação computacional. Dissertação de Mestrado. Departamento de Engenharia Mecânica, Universidade Federal de Pernambuco, 2007.
FLIR SYSTEMS ThermaCAM TM S45: Manual do operador. 2004.
HALL, M.; FRANK, E.; HOLMES, G.; PFAHRINGER, B.; REUTEMANN, P. E WITTEN, I. H. The WEKA Data Mining Software: An Update. SIGKDD Explorations, vol. 11, 2009.
HSU, C. N., HUANG, H. J. e WONG, T. T. (2000) apudYANG, Y. Encyclopedia of Machine Learning. Springer, editores: SAMMUT, C. e WEBB, G. I., p. 288, 2011.
INCA. Câncer de mama. Disponível em: http://www2.inca.gov.br/wps/wcm/connect/tiposdecancer/site/home/mama. Acesso em: 5 jul. 2012.
INCA2. Estimativa. Disponível em: http://www.inca.gov.br/estimativa/2012/inde x.asp?ID=5. Acesso em: 3 maio 2012.
INCA3. Câncer de mama: detecção precoce. Disponível em: http://www2.inca.gov.br/wps/wcm/connect/tiposdecancer/site/home/mama/deteccao_pre coce. Acesso em: 5 jul. 2012.
INFRAREDMED. Diagnóstico por infravermelho: Como é realizado. Disponível em: http://www.infraredmed.org/exame_como.php. Acesso em: 1 dez. 2011.
KEOGH, E. Encyclopedia of Machine Learning.Springer, editors: SAMMUT, C. e WEBB, G. I., p. 714, 2011.
KOAY, J.; HERRY, C. e FRIZE, M. Analysis of Breast Thermography with an Artificial Neural Network. Proceedings of the 26th Annual International Conference of the IEEE (EMBS), San Francisco, CA, USA, pp. 1159-1162, 2004.
KURUGANTI, P. T. e QI, H. Asymmetry analysis in breast cancer detection using thermal infrared images. Proceedings of Second Joint EMBS/BMES Conference, Houston, TX, USA, Vol. 2, No. 1, pp. 1129-1130, 2002.
LEI 11664. Dispõe sobre a efetivação de ações de saúde que assegurem a prevenção, a detecção, o tratamento e o seguimento dos cânceres do colo uterino e de mama, no âmbito do Sistema Único de Saúde – SUS. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2008/lei/l11664.htm. Acesso: 6 jul. 2012.
MOGHBEL, M. e MASHOHOR, S. A review of computer assisted detection/diagnosis (CAD) in breast thermography for breast cancer detection.Artificial Intelligence Review, Springer Netherlands, pp. 1-9. Disponível em: http://dx.doi.org/10.1007/s10462-011-9274-2. Acesso: 20 nov. 2011.
NG, E. A review of thermography as promising non-invasive detection modality for breast tumor. International Journal of Thermal Sciences, vol. 48, pp. 849-859, 2008.
NG, E. e SUDARSHAN, N. Numerical computation as a tool to aid thermographic. Journal of Medical Engineering and Technology, vol. 25, ed. 2, pp. 53-60, 2001.
OLIVEIRA, M. M. Desenvolvimento de um protocolo e construção de um aparato mecânico para padronizar a aquisição de imagens termográficas da mama. Dissertação de Mestrado, Departamento de Engenharia Mecânica, Universidade Federal de Pernambuco, 2012.
OMS. Organização Mundial de Saúde. Disponível em: http://www.who.int/cancer/publications/worl d_cancer_report2008/en/index.html. Acesso em: 06 jul. 2012.
PARAMANATHAN, P. e UTHAYAKUMAR, R. An algorithm for comuting the fractal dimension of waveforms. Applied Mathematics and Computation vol. 195, ed. 2, pp. 598-603, 2008.
PEREIRA, R. P.; PLASTINO, A.; ZADROZNY, B.; MERSCHMANN, L. H. C. e FREITAS, A. A. Lazy attribute selection: Choosing attributes at classification time.Intelligent Data Analysis Journal, IOS Press, vol. 15, ed. 5, pp. 715- 732, 2011.
PROENG. Processamento e Análise de Imagens Aplicada à Mastologia. Disponível em: http://visual.ic.uff.br/proeng. Acesso em: 10 dez. 2011.
RESMINI, R. Análise de Imagens Térmicas da Mama Usando Descritores de Textura. Dissertação de Mestrado. Instituto de Computação, Universidade Federal Fluminense, 2011.
RUSSEL, S. e NORVIG, P. Inteligência Artificial. Elsevier, tradução da 2ª ed., pp. 630 e 640, 2004.
SCHAEFER, G.; ZAVISEK, M. e NAKASHIMA, T. Thermography based breast cancer analysis using statistical features and fuzzy classification. Pattern Recognition, vol. 42, ed. 6, pp. 1133–1137, 2009.
SHEKAR, S. e XIONG, H., Eds. Encyclopedia of GIS. Springer, 2008. ISBN 978-0-387-35973-1.
SOBRATERM. Sociedade Brasileira de Termologia. Disponível: http://www.termologia.org. Acesso em: 10 dez. 2011.
UMADEVI, V.; RAGHAVAN, S. V. e JAIPURKAR, S. Framework for estimating tumour parameters using thermal imaging. Indian Journal of Medical Research, Vol. 134, pp. 725-731, 2011.
WEBB, G. I. Encyclopedia of Machine Learning. Springer, editors: SAMMUT, C. e WEBB, G. I., p. 713, 2011.
WIECEK, B., STRZELECKI, M., JAKUBOWSKA, T., WYSOCKI, M., PESZYNSKI, C. D. Medical Infrared Imaging. CRC Press, editors: DIAKIDES, N. A., BRONZINO, J. D.,Cap. 12, pp. 12.1- 12.13, 2008.
ZOU, K. H., O’MALLEY, A. J, e MAURI, L.Statistical Primer for Cardiovascular Research: Receiver-Operating Characteristic Analysis for Evaluating Diagnostic Tests and Predictive Models.Circulation, Vol. 115, pp. 654-657, 2007.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2012 Roger Resmini, Aura Conci, Tiago Bonini Borchartt, Rita de Cássia Fernandes de Lima, Anselmo Antunes Montenegro, Cristina Asvolinsque Pantaleão

This work is licensed under a Creative Commons Attribution 4.0 International License.
Brazilian Journal of Accounting and Management offers free and immediate access to its content, following the principle that providing scientifical knowledge in a free manner promotes a better world democratization of knowledge. Authors maintain copyright of articles and grant to the journal the rights of the first publication, according to the Creative Commons Attribution licensing criteria, which allows the work to be shared with initial publication and authorship recognition. These licenses allow others to distribute, remix, adapt, or create derived work, even if it is for commercial purposes, provided that the credit is given to the original creation.