Early diagnosis of mamarian diseases using thermal imaging and machine learning

Authors

DOI:

https://doi.org/10.5965/2316419001012012055

Keywords:

thermography, breast cancer, computed aided diagnosis

Abstract

Cancer is a class of diseases characterized by out-of-control cell growth, they have lost their function in tissue and do not die. This reproduction increases the local temperature because new blood vessels, neo-angiogenesis, are promoted by cancer cells. The medical thermography is a way to acquire the skin temperature and analyze these patterns. The human body is almost symmetric considering the sagittalplane that is the plane that divides the body in right and left parts, when there are great changes in the temperature pattern between right and left breast possible pathology must be investigated. This work aims to explore the possibilities of pattern recognition techniques on the classification of the images from the ProENG project as from healthy orpathological mamma. Threedifferent groups of feature are extracted from the thermal images of this project: statistic features, fractal geometry based features and geo-statistic features. Three classifiers have been tested: SVM, KNN and Naïve Bayes. Additionally two feature reduction techniques have been used: PCA and Information Gain Ratio. The results are promising: 90% of accuracy and 0.9 for the area under ROC.

Downloads

Download data is not yet available.

Author Biographies

Roger Resmini, Fluminense Federal University, UFF, Brazil.

PhD in Computing Sciences from the Fluminense Federal University, UFF, Brazil.

Has a Master’s degree in Computing Sciences from the Fluminense Federal University, UFF, Brazil.

Graduated in Computing Sciences at the Rondonópolis Arnaldo Estevão UNIC, UNIC, Brazil.

Adjunct Professor at the Mato Grosso Federal University, CUR, ICEN.

Aura Conci, Fluminense Federal University, UFF, Brazil.

PhD in Civil Engineering from the Pontifical Catholic University of Rio de Janeiro, PUC-Rio, Brazil.

Has a Master’s degree in Civil Engineering from the Pontifical Catholic University of Rio de Janeiro, PUC-Rio, Brazil.

Graduated in Civil Engineering at the Espírito Santo Federal University, UFES, Brazil.

Professor at the Fluminense Federal University, Computing Sciences Institute.

Tiago Bonini Borchartt, Fluminense Federal University, UFF, Brazil.

PhD in Computing Sciences from the Fluminense Federal University, UFF, Brazil.

Has a Master’s degree in Computing Sciences from the Santa Maria Federal University, UFSM, Brazil.

Graduate in Computing Sciences at the Universidade Federal Fluminense, UFF, Brazil.

Graduated in Computing Sciences at the Franciscan University, UFN, Brazil.

Professor at the Maranhão Federal University, Technological Center, Department of Informatics.

Rita de Cássia Fernandes de Lima, Federal University of Pernambuco, UFPE, Brazil.

PhD in Nuclear Technology from the University of São Paulo, USP, Brazil.

Has a Master’s degree in Nuclear Energy Technologies from the Pernambuco Federal University, UFPE, Brazil.

Graduated in Physics at the Pernambuco Federal University, UFPE, Brazil.

Professor at the Pernambuco Federal University, UFPE, Brazil.

Anselmo Antunes Montenegro, Fluminense Federal University, UFF, Brazil.

PhD in Informatics from the Pontifical Catholic University of Rio de Janeiro, PUC-Rio, Brazil.

Has a Master’s degree in Informatics from the Pontifical Catholic University of Rio de Janeiro, PUC-Rio, Brazil.

Graduated in Computing Sciences at the Fluminense Federal University, UFF, Brazil.

Professor at the Fluminense Federal University, UFF, Brazil.

Cristina Asvolinsque Pantaleão, Fluminense Federal University, UFF, Brazil.

PhD in Medical Sciences from the Fluminense Federal University, UFF, Brazil.

Has a Master’s degree in Medicine (Radiology) from the Rio de Janeiro Federal University, UFRJ, Brazil.

Specialist in Radiology from the Federal Council of Medicine, CFM, Brazil.

Specialist in Radiology from the Brazilian Society of Radiology, SBRad, Brazil.

Specialist in Medical Residency from the Fluminense Federal University, UFF, Brazil.

Graduated in Medicine at the Federal Fluminense University, UFF, Brazil.

Professor at the Fluminense Federal University, UFF, Brazil.

References

ACHARYA, U.R.; NG, E. Y. K.; TAN, J. H. e SREE, S. V. Thermography based breast cancer detection using texture features and support vector machine. Journal of Medical Systems, pp. 01-08, 2010.

ARABI, P. M.; MUTTAN, S. e SUJI, R. J. Image enhancement for detection of early breast carcinoma by external irradiation. International Conference on Computing Communication and Networking Technologies (ICCCNT), pp. 01-09, 2010.

ARORA, N., MARTINS, D., RUGGERIO, D., TOUSIMIS, E., SWISTEL, A., OSBORNE, M. P. Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer.The Amerian Journal of Surgery Vol. 196, pp. 523-526, 2008.

BEZERRA, L. Uso de imagens termográficas em tumores mamários para validação de simulação computacional. Dissertação de Mestrado. Departamento de Engenharia Mecânica, Universidade Federal de Pernambuco, 2007.

FLIR SYSTEMS ThermaCAM TM S45: Manual do operador. 2004.

HALL, M.; FRANK, E.; HOLMES, G.; PFAHRINGER, B.; REUTEMANN, P. E WITTEN, I. H. The WEKA Data Mining Software: An Update. SIGKDD Explorations, vol. 11, 2009.

HSU, C. N., HUANG, H. J. e WONG, T. T. (2000) apudYANG, Y. Encyclopedia of Machine Learning. Springer, editores: SAMMUT, C. e WEBB, G. I., p. 288, 2011.

INCA. Câncer de mama. Disponível em: http://www2.inca.gov.br/wps/wcm/connect/tiposdecancer/site/home/mama. Acesso em: 5 jul. 2012.

INCA2. Estimativa. Disponível em: http://www.inca.gov.br/estimativa/2012/inde x.asp?ID=5. Acesso em: 3 maio 2012.

INCA3. Câncer de mama: detecção precoce. Disponível em: http://www2.inca.gov.br/wps/wcm/connect/tiposdecancer/site/home/mama/deteccao_pre coce. Acesso em: 5 jul. 2012.

INFRAREDMED. Diagnóstico por infravermelho: Como é realizado. Disponível em: http://www.infraredmed.org/exame_como.php. Acesso em: 1 dez. 2011.

KEOGH, E. Encyclopedia of Machine Learning.Springer, editors: SAMMUT, C. e WEBB, G. I., p. 714, 2011.

KOAY, J.; HERRY, C. e FRIZE, M. Analysis of Breast Thermography with an Artificial Neural Network. Proceedings of the 26th Annual International Conference of the IEEE (EMBS), San Francisco, CA, USA, pp. 1159-1162, 2004.

KURUGANTI, P. T. e QI, H. Asymmetry analysis in breast cancer detection using thermal infrared images. Proceedings of Second Joint EMBS/BMES Conference, Houston, TX, USA, Vol. 2, No. 1, pp. 1129-1130, 2002.

LEI 11664. Dispõe sobre a efetivação de ações de saúde que assegurem a prevenção, a detecção, o tratamento e o seguimento dos cânceres do colo uterino e de mama, no âmbito do Sistema Único de Saúde – SUS. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2008/lei/l11664.htm. Acesso: 6 jul. 2012.

MOGHBEL, M. e MASHOHOR, S. A review of computer assisted detection/diagnosis (CAD) in breast thermography for breast cancer detection.Artificial Intelligence Review, Springer Netherlands, pp. 1-9. Disponível em: http://dx.doi.org/10.1007/s10462-011-9274-2. Acesso: 20 nov. 2011.

NG, E. A review of thermography as promising non-invasive detection modality for breast tumor. International Journal of Thermal Sciences, vol. 48, pp. 849-859, 2008.

NG, E. e SUDARSHAN, N. Numerical computation as a tool to aid thermographic. Journal of Medical Engineering and Technology, vol. 25, ed. 2, pp. 53-60, 2001.

OLIVEIRA, M. M. Desenvolvimento de um protocolo e construção de um aparato mecânico para padronizar a aquisição de imagens termográficas da mama. Dissertação de Mestrado, Departamento de Engenharia Mecânica, Universidade Federal de Pernambuco, 2012.

OMS. Organização Mundial de Saúde. Disponível em: http://www.who.int/cancer/publications/worl d_cancer_report2008/en/index.html. Acesso em: 06 jul. 2012.

PARAMANATHAN, P. e UTHAYAKUMAR, R. An algorithm for comuting the fractal dimension of waveforms. Applied Mathematics and Computation vol. 195, ed. 2, pp. 598-603, 2008.

PEREIRA, R. P.; PLASTINO, A.; ZADROZNY, B.; MERSCHMANN, L. H. C. e FREITAS, A. A. Lazy attribute selection: Choosing attributes at classification time.Intelligent Data Analysis Journal, IOS Press, vol. 15, ed. 5, pp. 715- 732, 2011.

PROENG. Processamento e Análise de Imagens Aplicada à Mastologia. Disponível em: http://visual.ic.uff.br/proeng. Acesso em: 10 dez. 2011.

RESMINI, R. Análise de Imagens Térmicas da Mama Usando Descritores de Textura. Dissertação de Mestrado. Instituto de Computação, Universidade Federal Fluminense, 2011.

RUSSEL, S. e NORVIG, P. Inteligência Artificial. Elsevier, tradução da 2ª ed., pp. 630 e 640, 2004.

SCHAEFER, G.; ZAVISEK, M. e NAKASHIMA, T. Thermography based breast cancer analysis using statistical features and fuzzy classification. Pattern Recognition, vol. 42, ed. 6, pp. 1133–1137, 2009.

SHEKAR, S. e XIONG, H., Eds. Encyclopedia of GIS. Springer, 2008. ISBN 978-0-387-35973-1.

SOBRATERM. Sociedade Brasileira de Termologia. Disponível: http://www.termologia.org. Acesso em: 10 dez. 2011.

UMADEVI, V.; RAGHAVAN, S. V. e JAIPURKAR, S. Framework for estimating tumour parameters using thermal imaging. Indian Journal of Medical Research, Vol. 134, pp. 725-731, 2011.

WEBB, G. I. Encyclopedia of Machine Learning. Springer, editors: SAMMUT, C. e WEBB, G. I., p. 713, 2011.

WIECEK, B., STRZELECKI, M., JAKUBOWSKA, T., WYSOCKI, M., PESZYNSKI, C. D. Medical Infrared Imaging. CRC Press, editors: DIAKIDES, N. A., BRONZINO, J. D.,Cap. 12, pp. 12.1- 12.13, 2008.

ZOU, K. H., O’MALLEY, A. J, e MAURI, L.Statistical Primer for Cardiovascular Research: Receiver-Operating Characteristic Analysis for Evaluating Diagnostic Tests and Predictive Models.Circulation, Vol. 115, pp. 654-657, 2007.

Published

2012-06-13

How to Cite

Resmini, R., Conci, A., Borchartt, T. B., Lima, R. de C. F. de, Montenegro, A. A., & Pantaleão, C. A. (2012). Early diagnosis of mamarian diseases using thermal imaging and machine learning. Revista Brasileira De Contabilidade E Gestão, 1(1), 55–67. https://doi.org/10.5965/2316419001012012055

Issue

Section

Articles